Eliminating fast reactions in stochastic simulations of biochemical networks: a bistable genetic switch.
نویسندگان
چکیده
In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove protein-DNA and/or protein-protein association-dissociation reactions from the reaction set using various coarse-graining strategies. We determine the effects on the steady-state probability distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA interactions may not. We also find that it is important to use the chemical master equation rather than macroscopic rate equations to compute effective propensity functions for the coarse-grained reactions.
منابع مشابه
Stochastic models for regulatory networks of the genetic toggle switch.
Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in t...
متن کاملStochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study
We study by means of analytical calculation and stochastic simulations how intrinsic noise modifies the bifurcation diagram of gene regulatory processes that can be effectively described by the Langevin formalism. In a general context, our study raises the intriguing question of how biochemical fluctuations redesign the epigenetic landscape in differentiation processes. We have applied our find...
متن کاملNumerical simulation of stochastic gene circuits
Armed with increasingly fast supercomputers and greater knowledge of the molecular mechanisms of gene expression, it is now practical to numerically simulate complex networks of regulated biological reactions, or gene circuits. Using an exact stochastic simulation algorithm, we obtain an accurate time-evolution of the behavior of complex gene circuits, including the effects of fluctuations caus...
متن کاملSteady-state parameter sensitivity in stochastic modeling via trajectory reweighting.
Parameter sensitivity analysis is a powerful tool in the building and analysis of biochemical network models. For stochastic simulations, parameter sensitivity analysis can be computationally expensive, requiring multiple simulations for perturbed values of the parameters. Here, we use trajectory reweighting to derive a method for computing sensitivity coefficients in stochastic simulations wit...
متن کاملLinking Bistable Dynamics to Metabolic P Systems
Bistability, or more generally multistability, is an important recurring theme in biological systems. In particular, the discovery of bistability in signal pathways of genetic networks, prompts strong interest in understanding both the design and function of these networks. Therefore, modelling these systems is crucial to understand their behaviors, and also to analyze and identify characterist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 4 شماره
صفحات -
تاریخ انتشار 2008